55 research outputs found

    KYP Lemma for Non-Strict Inequalities and the associated Minimax Theorem

    Full text link
    Several variations of the classical Kalman-Yakubovich-Popov Lemma, as well the associated minimax theorem are presented.Comment: 24 page

    Designing Optimal Quantum Detectors Via Semidefinite Programming

    Full text link
    We consider the problem of designing an optimal quantum detector to minimize the probability of a detection error when distinguishing between a collection of quantum states, represented by a set of density operators. We show that the design of the optimal detector can be formulated as a semidefinite programming problem. Based on this formulation, we derive a set of necessary and sufficient conditions for an optimal quantum measurement. We then show that the optimal measurement can be found by solving a standard (convex) semidefinite program followed by the solution of a set of linear equations or, at worst, a standard linear programming problem. By exploiting the many well-known algorithms for solving semidefinite programs, which are guaranteed to converge to the global optimum, the optimal measurement can be computed very efficiently in polynomial time. Using the semidefinite programming formulation, we also show that the rank of each optimal measurement operator is no larger than the rank of the corresponding density operator. In particular, if the quantum state ensemble is a pure-state ensemble consisting of (not necessarily independent) rank-one density operators, then we show that the optimal measurement is a pure-state measurement consisting of rank-one measurement operators.Comment: Submitted to IEEE Transactions on Information Theor

    Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions

    Get PDF
    This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely by studying the behavior at switching surfaces associated with PLS. The main idea is to analyze impact maps, i.e., maps from one switching surface to the next switching surface. Such maps are known to be "unfriendly" maps in the sense that they are highly nonlinear, multivalued, and not continuous. We found, however, that an impact map induced by an linear time-invariant flow between two switching surfaces can be represented as a linear transformation analytically parametrized by a scalar function of the state. This representation of impact maps allows the search for surface Lyapunov functions (SuLF) to be done by simply solving a semidefinite program, allowing global asymptotic stability, robustness, and performance of limit cycles and equilibrium points of PLS to be efficiently checked. This new analysis methodology has been applied to relay feedback, on/off and saturation systems, where it has shown to be very successful in globally analyzing a large number of examples. In fact, it is still an open problem whether there exists an example with a globally stable limit cycle or equilibrium point that cannot be successfully analyzed with this new methodology. Examples analyzed include systems of relative degree larger than one and of high dimension, for which no other analysis methodology could be applied. This success in globally analyzing certain classes of PLS has shown the power of this new methodology, and suggests its potential toward the analysis of larger and more complex PLS

    Stable Nonlinear Identification From Noisy Repeated Experiments via Convex Optimization

    Get PDF
    This paper introduces new techniques for using convex optimization to fit input-output data to a class of stable nonlinear dynamical models. We present an algorithm that guarantees consistent estimates of models in this class when a small set of repeated experiments with suitably independent measurement noise is available. Stability of the estimated models is guaranteed without any assumptions on the input-output data. We first present a convex optimization scheme for identifying stable state-space models from empirical moments. Next, we provide a method for using repeated experiments to remove the effect of noise on these moment and model estimates. The technique is demonstrated on a simple simulated example
    • …
    corecore